A parity-dependent lowerbound
Published:
We show that for flip operator $F$, and the family of maximally entangled states \(\operatorname{MAXE}=\{|{\Phi}\rangle||{\Phi}\rangle=\sum|{j_Aj_B}\rangle/\sqrt{d},\{|j\rangle\}\text{ is ONB}\},\) the range of the overlap between $F$ and $|{\Phi}\rangle$ depends on the parity of the dimension. Specifically, \(\{\langle{\Phi|F|\Phi}\rangle||{\Phi}\rangle\in\operatorname{MAXE}\}=\begin{cases}[-1,1]&d=2k\\ [-\frac{d-2}{d},1]&d=2k+1\end{cases}\)
